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Abstract 

To demonstrate the possibilities of non-resonant mag- 
netic X-ray diffraction, data taken on the antiferromag- 
netic model system MnF 2 in a medium X-ray energy 
range from 5 to 12 keV are presented. An experimental 
set-up for the measurement of magnetic X-ray diffrac- 
tion is introduced that employs a new design for a highly 
flexible polarization analyzer for synchrotron X-ray 
diffraction based on 90 ° Bragg reflection from a single 
crystal. The analyzer has been successfully tested on 
beamline W1 at HASYLAB by measuring the polariza- 
tion of the primary photon beam and of the 400 charge 
peak of an MnF 2 single crystal. Subsequently, the 
analyzer was used to explore the polarization depen- 
dence of the non-resonant magnetic X-ray scattering 
cross section of this sample, complemented by measure- 
ments of the directional dependencies without polariza- 
tion analysis. In the latter configuration, count rates as 
high as 3800 photons s -1 and a peak-to-background ratio 
of 160:1 were obtained. A method to determine the 
direction of the magnetic moments with respect to the 
crystalline axes is presented. The results give experi- 
mental support for the theoretical form of the non- 
resonant magnetic X-ray scattering cross section and at 
the same time provide a feasibility test for a general 
magnetic structure determination. 

1. Introduction 

Magnetic neutron diffraction has dominated the micro- 
scopical investigation of magnetic materials since the 
first magnetic structure determination by Shull, Strauser 
& Wollan (1951). The reasons for the superiority of 
thermal neutrons as a probe for magnetic structures and 
excitations lie not only in the microscopical space and 
time resolution but also in the direct coupling of the 
neutron dipolar moment with the atomic magnetic 
moments of the sample (e.g. Rossad-Mignod, 1987). 
The strength of this interaction is comparable to the 
interaction of the neutron with the nuclei, resulting in 
similar intensities for magnetic and nuclear scattering. 
This is in complete contrast to the scattering of X-rays 

from condensed matter. As with thermal neutron 
scattering, a microscopical space resolution can be 
obtained since in both cases the wavelength is compar- 
able to the interatomic distances. Owing to the high 
incident energy (several keV as compared to character- 
istic excitation energies of some meV), measurements 
with microscopic energy resolution are difficult 
(Burkel, 1991) and will certainly remain impossible 
for magnetic excitations for many years to come. In 
addition, magnetic scattering, as a relativistic effect, is 
largely suppressed as compared to regular charge 
(Thomson) scattering. For the scattering amplitude 
S(Q), the ratio between magnetic and charge scattering 
amounts roughly to (see e.g. Blume, 1985; Brunel & de 
Bergevin, 1991; Gibbs, 1992) 

Smag(Q)/Scharge(Q) ~ (hw/mc2)2 sin O(NMfM/Nf)(S) 

= (2c/d)(NMfM/Nf)(S). (1) 

Here, hw denotes the photon energy, mc 2 the rest mass 
of an electron (511 keV), 0 the diffraction angle, N (NM) 
and f (fM) the number and the form factor of all (the 
magnetic) electrons, (S) the expectation value of the 
spin quantum number, d the lattice spacing and 
2 c = h / m c -  2.426pm, the Compton length of an 
electron. Using appropriate values for the parameters 
in (1), one finds that the intensity of magnetic scattering 
is typically six orders of magnitude smaller than the 
intensity of charge scattering. For this reason, magnetic 
X-ray scattering has been considered an exotic topic 
after its discovery in 1972 and further pioneering 
experiments by de Bergevin & Brunel (1972, 1981). 
Magnetic X-ray diffraction has become a real alter- 
native to neutron diffraction only since the availability 
of highly intense, collimated, polarized and tunable 
X-ray beams provided by synchrotron-radiation 
sources. The main breakthrough came at the end of 
the 80s with magnetic X-ray diffraction studies of the 
rare-earth element Ho (Gibbs, Moncton, D'Amico, 
Bohr & Grier, 1985; Bohr, Gibbs, Moncton & 
D'Amico, 1986). Owing to the superior Q-space 
resolution, details of the magnetic structure, namely 
discommensurations or spin slips, could be resolved, 
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which had not been seen in earlier neutron diffraction 
experiments. Moreover, a first attempt was made to 
separate spin and orbital contributions to the magnetic 
form factor (Gibbs et al., 1988), an experiment that is 
not feasible with neutrons because of the specific form 
of the cross section. For the first time, a resonance 
enhancement of the magnetic signal has been observed 
on Ho (Gibbs et al., 1988) and could be theoretically 
described as resonant exchange scattering (Hannon, 
Trammell, Blume & Gibbs, 1988). Intensity gain 
factors of typically 50 are obtained for the lanthanide 
LII and L m edges. At the Miv edge of actinides, this 
intensity gain can be as high as seven orders of 
magnitude (Isaacs et al., 1989). Resonant diffraction 
also allows spectroscopy of the electronic states above 
the Fermi edge and renders magnetic diffraction 
sensitive to the magnetic species. With all the 
advantages of resonant diffraction, it is natural that 
thereafter only a few experiments dealt with non- 
resonant magnetic X-ray diffraction, mainly on the well 
characterized model antiferromagnet MnF 2 (Goldman 
et al., 1987; Brfickel et al., 1993; Lippert, Briickel, 
K6hler & Schneider, 1994) or its site-diluted random 
field system MnxZn~_xF 2 (Thurston, Peters, Birgeneau 
& Horn, 1988; Hill, Thurston, Erwin, Ramstad & 
Birgeneau, 1991; Hill, Feng, Birgeneau & Thurston, 
1993a,b). 

For transition-metal ions, only K edges lie in the 
range of hard X-ray wavelengths where atomic resolu- 
tion is achievable. Owing to the dipole and quadrupole 
selection rules and the small overlap between core ls 
states and the magnetic sensitive 3d or 4p energy bands, 
resonance enhancements are negligible at transition- 
metal K edges (Namikawa, Ando, Nakajima & Kawata, 
1985). For example, at the K edge of MnF 2, the 
magnetic resonant scattering is completely dominated 
by resonant anomalous charge scattering (de Bergevin, 
Stunault, Vettier, Briickel & Lippert, 1993) while we 
found an enhancement by a factor of 2 in RbMnF 3 
(Stunault, de Bergevin, Wermeille, Briickel & Vettier, 
1994). For investigations of such materials, one is left 
with neutron or non-resonant magnetic X-ray scatter- 
ing. Since most magnetic materials contain 3d elements, 
it is obvious that techniques for non-resonant magnetic 
X-ray scattering have to be developed for magnetic 
X-ray scattering to become a generally applicable 
microscopic probe of magnetism, Moreover, the non- 
resonant magnetic scattering cross section contains 
complementary information as compared to the resonant 
scattering cross section. For example, with non- 
resonant diffraction, the separation of spin and angular 
momentums should be possible without further assump- 
tions and magnetic moment directions can be deter- 
mined by the procedure outlined below. For these 
reasons, we decided to investigate the possibilities of 
non-resonant magnetic X-ray diffraction on the simple 
and very well characterized model system MnF 2. In 

contrast to an earlier X-ray study of MnF 2 (Goldman et 
al., 1987), which concentrated on the temperature 
dependence of the order parameter close to the 
transition temperature TN, we were mainly interested 
in the dependencies of the cross section on moment 
direction, magnitude of the scattering vector and 
polarization. The latter contains important information: 
polarization analysis can be used to distinguish between 
magnetic and charge scattering. In addition, it is 
essential for a systematic investigation of the various 
parts of the magnetic cross section. Off resonance, the 
Fourier components of spin and orbital angular 
momentum densities depend in different ways on the 
scattering geometry and the incident and final polariza- 
tion states. Therefore, X-ray scattering can separate 
directly the different contributions to magnetization 
densities in solids. Examples for the application of 
polarization analysis to the non-resonant and resonant 
magnetic scattering from holmium can be found in 
Gibbs et al. (1988) and for the non-resonant scattering 
from Mno.75Zno.25F 2 in Hill, Feng, Birgeneau & 
Thurston (1993b). Polarization analysis is also import- 
ant in anomalous anisotropic scattering experiments for 
the determination of extinction factors and in measure- 
ments of the Faraday effect (Belyakov & Dimitrienko, 
1989). 

The paper is organized as follows: Our magnetic 
model system MnF 2 is introduced in §2. Elements of the 
non-resonant magnetic scattering cross section relevant 
to this work are discussed in §3. In ~4, we describe an 
experimental set-up that allows a full linear polarization 
analysis in a synchrotron X-ray diffraction experiment. 
Its main feature is a new polarization analyzer, which 
was constructed for applications in magnetic X-ray 
scattering. In §5, we report some test experiments that 
demonstrate the capabilities of the device and allow us 
to determine the polarization state of the incident X-ray 
beam. The results of our magnetic diffraction experi- 
ments on MnF 2 are presented in ~6, followed by a 
discussion (§7) and summary and conclusions (§8). Parts 
of this work have already been published as a 
conference report (Briickel, Lippert, K6hler, Schneider 
& Prandl, 1995). First observations of magnetic 
scattering from MnF 2 at very high photon energies 
have been reported by Brfickel et al. (1993) and 
Lippert, Briickel, K6hler & Schneider (1994). New 
and more detailed studies at 80 keV are the subject of 
the following paper (Strempfer et al., 1996, hereafter 
referred to as paper 2). 

2. The model system MnF 2 

As explained in the Introduction, non-resonant magnetic 
X-ray diffraction is of particular interest in transition- 
metal compounds, where no resonance enhancement of 
the magnetic scattering can be obtained for hard X-rays. 
We have chosen MnF 2 as a model system because it has 
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been very well characterized by various techniques 
including neutron (Erickson, 1953) and X-ray scattering 
(Goldman et al., 1987; Lippert, Brfickel, K6hler & 
Schneider, 1994) and because crystals of excellent 
quality are available. The crystal used in our studies has 
the shape of a platelet with a (100) surface and 
dimensions 2 x 10 x 15mm. The mosaic distribution 
is anisotropic. For reflections of type h00, the rocking- 
curve width was determined by high-resolution scatter- 
ing of 80 keV X-rays. With the c axis perpendicular to 
the scattering plane, we determined a width of 12" for 
the mosaic distribution; with c in the scattering plane, 
the corresponding value is 20". 

Some basic properties of MnF 2 relevant for our work 
are listed below: 

(a) MnF 2 has the simple tetragonal rutile-type crystal 
structure with space group P4/mnm depicted in Fig. 1. 
Mn is located at the corners and the center of the 
tetragonal unit cell of dimensions a =4.874 and 
c = 3.310A at room temperature. The Mn atom at 
(0, 0, 0) is surrounded by a pair of nearest-neighbor F 
atoms at positions -4-(0.305, 0.305, 0) (Jauch, Schneider 
& Dachs, 1983), while the local environment is rotated 
for the central Mn atom owing to the presence of the 
n-glide plane. 

(b) Below T N _~ 67.7K, MnF 2 orders antiferromag- 
netically as indicated in Fig. 1 (Erickson, 1953): MnF 2 
is an example of a simple two-sublattice antiferro- 
magnet, where the magnetic moment in the center of the 
unit cell is antiparallel to the moment at the corners. A 
small uniaxial anisotropy aligns the moments parallel to 
the +c axis. Only two domain types exist and the 
domain sizes are macroscopical (Baruchel et al., 1988), 
leading to resolution-limited widths of magnetic Bragg 
reflections for lattice-parameter scans. Since the spin 
direction relative to the lattice is well known, the 
dependence of the cross section on the various 
components of the magnetic moment can be investigated 
by turning the sample around the scattering vector as 
will be explained below in further detail. 

) 
b = a  

Fig. 1. The crystalline and magnetic unit cell of MnF 2 

(c) Covalence effects are small (Nathans, Alperin, 
Pickart & Brown, 1963) so that the magnetic moment 
results mainly from a spherically symmetric 6S5/2 state 
of the Mn 2+ ion, i.e. is due to spin only. Therefore, 
only the spin-dependent part of the scattering cross 
section could be tested in our experiments. 

(d) Because the chemical and magnetic unit cells 
coincide, there are reflections such as 111,210 . . . .  that 
have both magnetic and charge contributions at low 
temperatures. However, owing to the glide plane (n in 
the paramagnetic phase for T > T N, n' in the mag- 
netically ordered phase for T < T N, where the prime 
denotes the time-inversion operation) or the screw axis 
(42 for T > T N, 4~ for T < TN), reflections of type h00 
with h = 2 n + l  ( n = 0 , 1 , 2 , 3  . . . .  ) have no charge 
contribution either in the paramagnetic or in the ordered 
phase. Therefore, at these reciprocal-lattice points, the 
purely magnetic part of the cross section can be 
measured in principle. However, since charge scatter- 
ing at h00 reflections is not forbidden by an integral 
reflection condition - as for centered unit cells - 
multiple charge scattering due to Umweganregung can 
occur and may obstruct the observation of the magnetic 
signal. Since magnetic scattering is much weaker than 
charge scattering, even weak multiple-scattering events 
due to weak charge reflections and streaks of the 
resolution function have to be avoided by rotating the 
sample around the scattering vector (qJ angle). Multi- 
pie-scattering events can be identified by a calculation 
of their positions and usually experimentally by their 
intensity, shape and displacement in o9. This will be 
discussed in more detail in paper 2 for the scattering of 
high-energy photons, where the effect is much more 
important. 

(e) At the Mn K edge, anisotropic anomalous 
(Templeton) scattering may occur and can give rise to 
the appearance of intensity for reflections being system- 
atically extinct by space-group symmetry. This effect 
occurs for reflections of type h00, where the extinction 
condition due to the n- (n'-) glide plane is violated at 
resonance (Kirfel, Petcov & Eichhorn, 1991), leading 
to intensities roughly three orders of magnitude larger 
than purely magnetic scattering. Therefore, a wide 
energy region of some 400 eV around the Mn K edge 
should be avoided in studies of non-resonant magnetic 
diffraction. 

3. The non-resonant magnetic X-ray scattering cross 
section 

The cross section for non-resonant magnetic X-ray 
scattering has been discussed in various approximations 
by several authors (de Bergevin & Brunel, 1981; 
Platzman & Tzoar, 1970; Grotch, Kazes, Bhatt & 
Owen, 1983; Blume, 1985; Blume & Gibbs, 1988; 
Lovesey, 1987). For the case of diffraction of high- 
energy X-rays, the limitations of these approximations 



430 NON-RESONANT SCATTERING CROSS SECTION OF MnF 2. 1 

become apparent and will be discussed in paper 2. Here 
we recall the basic results in a formulation adapted to 
the specific case of Bragg diffraction. At moderately 
high X-ray energies, the elastic cross section for 
scattering of photons with incident polarization e into 
a state of final polarization e' can be written as 

dcr/d~ ~__,~, = [e2/mc2] 2 (Mc)e~ + i(2c/d)(MM)e, ~ 2. 

(2) 

Here, re=e2/mc2~_2.818fm denotes the classical 
electron radius, 2 c = h/mc = 2.426pm, the Compton 
length of an electron. The scattering amplitudes (Mc) 
and (MM) are given as matrices that describe the 
polarization dependencies of charge and magnetic 
scattering, respectively. In our experiment, we used 
linearly polarized photons from a symmetric wiggler 
and measured the components of the linear polarization 
after scattering. It is therefore convenient to use as basis 
vectors, for a description of the photon polarization, 
unit vectors perpendicular to the wave vectors of 
incident and scattered photons, k and k'. cr polarization 
corresponds to the basis vector perpendicular to the 
scattering plane, 7r polarization corresponds to the 
vectors in the kk' plane. The basis vectors for the 
components of the magnetic moment of the sample and 
for the polarization states are plotted in Fig. 2 and 
defined as follows: 

Ul : ( k  -a t- k')/Ik + k'l, 
f i 2 -  (k' x k)/Ik'  × kl = cr -- o", 

(3) 
f i3  = ( k '  - k ) / I k '  - k l  = Q/Q, 

n = f ~  × ~, n' = f¢ × ~'. 

Note that compared to Blume & Gibbs (1988) we chose 
the opposite sign for the basis vectors fi2 and fi3 since 
we like to keep the usual definition of the scattering 
vector Q = k' - k II fi3. In this basis, the matrices in (2) 
can be written as: 

(a) (AIM) for the magnetic part: 

a '  

(7 

$2 cos 0 [(L1 + $1) cos 0 
+S 3 sin 0] sin 0 

[-(L1 + S1)cos0 [2L2 sin 2 0 + S2]cos0; 
+ S 3 sin 0] sin 0 (4) 

(b) (Mc) for charge scattering: 

to'~ fr°m [ (7 

cr ~ p(Q) 0 
0 p(Q)(cos20). 

(5) 

Here, S i = Si(Q) and L i = Li(Q) (i = 1, 2, 3) denote 
the components of the Fourier transform of the 

magnetization density due to the spin and orbital 
angular momentum, respectively, as defined in Blume 
& Gibbs (1988). p(Q) denotes the Fourier transform of 
the electronic charge-density distribution. 

We would like to add some comments to the form of 
the cross section given in (2) to (5): 

(a) Magnetic scattering is a relativistic correction to 
charge scattering and therefore the cross section (2) is 
usually written in a slightly different form with a pre- 
factor hw/mc 2 for the magnetic amplitude. This form 
shows that for observations under a given scattering 
angle the amplitude of magnetic scattering increases 
with photon energy since relativistic effects became 
pronounced as hw ~ mc 2. Using this pre-factor is 
therefore well adapted to the case of incoherent 
Compton scattering. For coherent elastic Bragg scatter- 
ing, on the other hand, the ratio between the magnetic 
and the charge amplitudes is determined by the 
momentum transfer and not by the energy transfer. 
Therefore, we have written the pre-factor for the 
magnetic amplitude in the cross section (2) as 2c/d 
[and included a factor (2sinO) -1 in (MM)], which 
emphasizes that for a given Bragg reflection the ratio 
between magnetic and charge scattering is virtually 
independent of photon energy, at least to within the 
approximations leading to (2). 

(b) Equation (2) contains three terms: pure Thomson 
scattering (--~ I(Mc)12), purely magnetic scattering 
[~ I(2c/d)(MM)[ 2] and an interference term 
[~-2(2c/d)Im{(Mc)(MM)*}]. The latter vanishes if 
charge and magnetic scattering do not occur at the same 
position in reciprocal space. Only this case is relevant in 
what follows, i.e. we consider pure magnetic scattering 
only. 

(c) Equation (4) shows that the spin and orbital 
contributions have different angular and polarization 
dependencies and can therefore be distinguished in 
principle. However, for the case of MnF 2, we have to 
deal with the spin part only. 

(d) The components S 2 and L 2 perpendicular to the 
scattering plane do not alter the photon polarization 
during scattering for a pure incident state, while the 
components in the scattering plane always induce 

"L 

Fig. 2. Definition of the basis vectors for the components of the spin 
and angular momentum as well as for the polarization states of the 
incident and diffracted beams. 
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transitions cr < > Jr. The latter processes can be used to 
distinguish between magnetic and charge scattering. 

The form of the scattering cross section (2) is only 
valid for a totally s polarized beam. For the general case 
of a mixed polarization state, a density-matrix formal- 
ism is appropriate. This is discussed in detail by de 
Bergevin & Brunel (1981) and Blume & Gibbs (1988). 
Here we restrict ourselves to the case for our 
experimental situation, where we have an incident 
beam with linear polarization 

P = (lEvi 2 -IE~,I2)/(IE,,I 2 + IE,~I 2) > 0 (6) 

along the fi2 axis and all other components vanish [E,~ 
and E~ represent the components of the electric field 
vector along the two orthogonal basis vectors defined in 
(3)]. In this case, the density matrix for the incident 
beam takes the very simple form 

I ( I + P  0 ) 
0 1 - P  • (7)  

With (7), the density matrix of the final beam and the 
scattering cross section can then be calculated as 

p ' =  (M)p(M)t; dcr/dS2 = (e2/mc2) 2 tr(p'). (8) 

We further consider only the spin part of the purely 
magnetic scattering cross section and assume S 3 - 0 ,  
which is appropriate for our actual experimental 
configuration, see below. Then we obtain from (8): 

da/dY2 = (e2/mc2)2(2c/d)2 

x cos 2 0{[S2(Q)] 2 + [SI(Q)] 2 sin 2 0}, (9) 

e'  = P(S~ - S~ sin 2 O)/(Sg + S 2 sin 2 O), (10) 

where P ' =  (lEon[ 2 - I E ,  el2)/(IEo~l 2 + [E~e] 2) again 
denotes the degree of linear (or', zd) polarization after 
diffraction. In our experiment, we only measured this 
component. 

4. Experimental set-up for magnetic X-ray diffrac- 
tion and linear polarization analysis 

The experiments were done on the wiggler beamline 
W1 at HASYLAB with the storage ring DORIS 
operating at 4.5 GeV positron energy. The X-ray source 
is a 32 pole wiggler with a critical energy of 8.1 keV at 
minimal gap. The main optical components of this 
beamline are a fixed-exit double monochromator and a 
double-focusing Au-coated toroidal mirror. For our 
experiments, we employed water-cooled Si(111) mono- 
chromator crystals. To monitor the incident intensity 
and polarization, we used an ionization chamber and a 
polarization monitor, respectively. The sample is 
mounted inside a closed-cycle cryostat that allows 
temperature variations between 10 and 300K with a 
temperature stability better than 1 K. In a first experi- 

ment, the cryostat was equipped with an internal cold 
sample rotation and Kapton windows (Ihringer & 
Kiister, 1993), while in a second ~ experiment Be 
domes allowed a rotation of the cryostat as a whole. 
The cryostat is attached to a RISO-type surface 
diffractometer and three goniometers provide for all 
angular degrees of freedom. Finally, the scattered beam 
can be measured either directly with an NaI scintillation 
detector or with a Ge solid-state detector. A new 
analyzer/polarization analyzer unit, which is described 
in more detail below, can also be employed. 

The polarization monitor is based on the polarization 
dependence of charge scattering (5) and measures the 
linear polarization P defined in (6). Note that from a 
symmetric wiggler we do not expect any circular 
polarized component or linear polarization at 45 ° with 
respect to the o" and rr directions. Two NaI scintillation 
counters are mounted with their axes perpendicular to 
each other and to the incident beam. Collimators in 
front of the detectors select scattering in a narrow 
angular range around the cr and Jr directions, respec- 
tively. In contrast to the set-up proposed by Smend, 
Schaupp, Czerwinski, Millhouse & Schenk-Strauss 
(1985), we did not use a Kapton foil as scatterer, 
since it turned out that such a device is rather sensitive 
to the alignment in the beam. Instead, we used air 
scattering, which gave sufficient count rates to obtain P 
with a precision of 1% within 1 s. 

The polarization analyzer is again based on 90 ° 
charge scattering, but this time from a single crystal to 
enhance the diffracted intensity [compare the set-up 
described by Gibbs, Blume, Harshman & McWhan 
(1989)]. Our new design stands out for its high 
versatility. With the same device, the diffracted beam 
from the sample can be detected without further analysis 
and, after scattering from an analyzer crystal, in the 
conventional set-up to enhance the energy and Q-space 
resolution of the diffractometer or as a polarization 
analyzer to measure the degree of linear polarization 
after scattering from the sample. A sketch of the device 
is shown in Fig. 3. The diffracted beam from the sample 
passes through an evacuated flight tube, which serves as 
a collimator owing to the two cross-slit systems in front 
and behind the tube. In order to select a certain region 
on the sample surface, the first slits are stepper-motor 
driven and can be scanned in two perpendicular 
directions. The flight tube together with the following 
analyzer unit is mounted on a base plate that allows for 
three manual adjustments (one translation and two 
rotations). These are needed to align the incident wave 
vector of the analyzer unit (ka) with the final wave 
vector from the sample (k'), which has to be done at the 
beginning of each experiment. The analyzer unit itself is 
mounted inside two perpendicular aluminium tubes in a 
T-shaped arrangement. The aluminium housing pro- 
vides very good shielding so that the analyzer is 
virtually background free. The central tube is mounted 



432 NON-RESONANT SCATTERING CROSS SECTION OF MnF 2. 1 

on a turntable that allows the analyzer unit to rotate 
around (kA) (angle or). This feature is required for use as 
a polarization analyzer with 90 ° scattering from the 
analyzer crystal. For example, by changing or, the beam 
can be scattered from the analyzer crystal either within 
the scattering plane of the sample or perpendicular to it, 
giving access to the cr and 7r components of the 
diffracted beam, respectively. The perpendicular tube 
of the 'T '  has two gionometers on either side, one for 
the detector arm (2Oa) and one for the analyzer crystal 
(o~a), for which an additional tilt table is mounted on top 
of the o9 a movement. To further reduce the background, 
a double slit in front of the detector is available. 

While for a conventional analysis perfect silicon or 
germanium crystals are used in order to achieve better 
energy and Q-space resolution, the requirements for an 
analyzer crystal are quite different for the case of 
polarization analysis, where integrated intensities are 
determined. Most important of all, one has to find a 
crystal with a reflection at d -- 2/21/2, allowing for 90 ° 
diffraction. At 2t9 a = 90 °, the form factor and the 
Debye-Waller factor strongly reduce the reflected 
intensity. Therefore, the analyzer crystal should have 
a very high peak reflectivity. On the other hand, it 
should accept the whole divergence of the beam 
diffracted from the sample in order to avoid time- 
consuming rocking-curve scans of the analyzer crystal. 
Moreover, if the 90 ° condition cannot be kept ideally 
(note that the error in P' is less than 1% in the angular 
range 86 to 94°), the crystal should reflect kinematically 

® 

q) 

© 

t 

Fig. 3. Polarization analyzer. 1: motorized double slit system; 2: 
evacuated flight tube; 3: base plate with three manual degrees of 
freedom for alignment; 4: goniometer for the c~ movement (see 
text); 5: entrance slit; 6: goniometer for the o9 movement of the 
analyzer crystal; 7: tilt of the analyzer crystal; 8: aluminium 
housing of the analyzer; 9: goniometer for the analyzer 20 
movement; 10: detector aperture slits; 11: NaI detector. 

in order to allow for a correction of the measured 
polarization via (5). Therefore, the best choice is a 
mosaic crystal, which compromises between high peak 
reflectivity and a sufficient width of the rocking curve. 
Often, pyrolytic graphite (PG 002 and higher har- 
monies) is chosen as analyzer, which, however, gives 
only a very limited choice of wavelengths. In our 
experiments, we have successfully employed annealed 
silicon crystals with a mosaic width of -,~ 6" (Schneider 
et al., 1989). Their high peak reflectivities partly 
compensate for the fact that the rocking-curve width is 
much too small to accept the full divergence of the beam 
in all directions (~ 50 to 10"). Much time can be saved 
by continuously sweeping the analyzer crystal through 
the diffraction condition instead of taking full rocking- 
curve step scans. While the mosaicity is still by far too 
small, the advantage of using annealed silicon crystals is 
that for many wavelengths between 1 and 2 A there are 
main reflections that obey the 90 ° diffraction condition 
approximately. 

5. Test of the polarization analyzer and the 
polarization of the incident synchrotron beam 

For a first test of the polarization analysis set-up, we 
produced a completely ~-polarized beam by a close to 
90 ° charge reflection from the sample crystal. As 
analyzer, we used a silicon 004 mosaic crystal for a 
wavelength of 1.91,~. As expected, the degree of 
polarization of the diffracted beam turned out to be 
higher than 98 %. In a second step, the polarization of 
the W l primary beam was measured, once with the 
Si004 an.alyzer for 2 = 1.91 A, once with PG008 for 
2 = 1.19A. In Fig. 4, we plot integrated intensities 
from the PG 008 analyzer as a function of the angle o~ 
between the vertical and the scattering plane of the 
analyzer. The solid curve is a refinement according to 

I ( a ) = H c o s 2 ( a - a o ) +  V sin2(a - ol0). (11) 

H and V denote the intensities corresponding to 
horizontal and vertical polarization, respectively, and 
ot 0 describes a possible tilt, which turned out to be 
identical to zero. The degree of horizontal polarization 
is given by [compare with (6)] 

P = ( H -  V)/(H + V). (12) 

With completely open entrance slits, we determined P 
to be about 84 (1)%. Here, we want to mention that all 
the measurements reported in this section have been 
done with the Si 111 double monochromator tuned to 
maximal intensity. Owing to dynamical diffraction 
effects, the polarization can be further increased by 
detuning the monochromator. 

The value for P was verified by independent 
measurements with the polarization monitor. Fig. 5 
shows the variation of the incident polarization with 
photon energy as determined from (12). The polariza- 
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tion of the full monochromatic beam is nearly 
independent of energy and amounts to roughly 85%. 
The polarization of the white beam in front of the 
monochromator is significantly lower. It has been 
calculated using the known machine parameters of the 
storage ring DORIS and insertion device (Pflfiger, 
1989). The result is shown in Fig. 5 as a dotted line. 
The double monochromator increases the polarization. 
For an ideal mosaic crystal with vertical scattering 
plane, the vertical component is suppressed by a factor 
cos 2 0  [compare with (5)]. This factor holds only within 
the kinematical theory and not for dynamical diffraction 
(Jennings, 1981), which one would expect to occur for 
our perfect Si 111 monochromator crystals. However, 
the first monochromator crystal deforms under the 
thermal load of nearly 1 kW and thus no longer reflects 
as a truly perfect crystal. In total, we found that with an 
effective factor of cos 3 2 0  for the suppression of the 
vertical (zr) polarization component by our two mono- 
chromator crystals, we obtain a reasonable agreement 
between calculated and measured degree of polariza- 
tion, see solid line in Fig. 5. Finally, we have examined 
the angular dependence of the linear polarization by 
performing a vertical scan with a fine slit of 0.2 mm. 
Fig. 6 shows the degree of linear polarization as a 
function of the angle of elevation above and below the 
orbital plane of the storage ring. The dots represent the 
measured values, the solid line the calculation, the 
difference probably being due to heat-load effects in the 
first crystal. As expected, the polarization can be 
increased up to 93% by closing the monochromator 
entrance slits vertically down to 1 mm. Without a 
polarizer ( e . g .  detuned monochromator crystals), a 
higher polarization cannot be obtained at the DORIS HI 
storage ring owing to the finite vertical emittance of the 
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Fig. 4. Measurement of the polarization of the monochromatic 
primary beam with an energy of 10.46keV. The full circles show 
integrated intensities I from a PG 008 analyzer as a function of the 
angle ot described in the text. The solid line is a refinement 
according to equation (11). 

electron beam, leading to a vertical beam dimension of 
a z = 0.42 mm with a divergence of d z = 0.033 mrad at 
W1. 

6 .  N o n - r e s o n a n t  m a g n e t i c  s c a t t e r i n g  f r o m  MnF 2 

We studied non-resonant magnetic diffraction from 
M n F  2 f r o m  t h e  1 0 0 , 3 0 0  a n d  500  Bragg peaks at various 
X-ray energies between 5 and 12 keV below as well as 
above the Mn K edge. Fig. 7 shows a rocking curve of 
the 300 reflection from M n F  2 at T =  10K and 
~t = 1.5 A as an example. For this scan, the spin ( i . e .  
the c axis) was perpendicular to the scattering plane 
(S 1 = S 3 = 0, S 2 = S _~ 5/2) and we expect the diag- 
onal elements in (4) to be maximized and the off- 
diagonal elements to vanish. Depending on the ring 
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Fig. 5. Energy dependence of the linear polarization P of the full 
primary beam. The full circles show experimental data (with a 
typical standard deviation of 4-1%) as measured with the 
polarization monitor according to the definition (12). The dotted 
line shows the expected linear polarization from the insertion device 
in front of the double monochromator. The monochromator 
increases the degree of linear polarization as indicated by the 
solid line. As a result, the degree of linear polarization at the sample 
becomes nearly independent of energy and amounts to -v85 %. 
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Fig. 6. Degree of linear polarization P as measured with the 
polarization monitor as a function of the angle of elevation )~ 
above and below the orbital plane of the storage ring. The dots 
represent measured data, the solid line the calculated dependence. 
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current, a peak count rate of up to 3800 counts S -1 for 
non-resonant magnetic scattering could be observed. 
With a Ge detector, a peak-to-background ratio of 70:1 
was obtained. Further improvements can be achieved by 
using an analyzer crystal as demonstrated in Fig. 8. We 
obtained a peak-to-background ratio of 160:1 with a 
Q-space resolution element of 5 x 10 -9 ,~-3. 

A first indication for the magnetic origin of the 
observed Bragg peaks is the temperature dependence 
shown in Fig. 9: above T N _~ 68 K, the Bragg signal 
vanishes completely. In a next step, we tested the 
dependencies of the magnetic cross section (4) on the 
spin components. Since the crystal has a (100) face and 
we are looking at h00 reflections, the crystal can be 
rotated around the scattering vector Q (angle ~) without 
violating the Bragg condition or changing the scattering 
geometry. Since the spin is pointing towards +c, the 
spin components during such a rotation are given by 
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Fig. 7. Roe.king curve of the 300 magnetic reflection at T = 10K and 
2 = 1.5 A. The spin is perpendicular to the scattering plane. 

S x = S s i n ~ ,  S 2=Scos~p,  S 3 = 0 ,  (13) 

and from (9) and (10) we obtain an expression for the 
variation of the integrated intensity (without polariza- 
tion analysis) and for the degree of polarization in the 
form 

10P, 0) oc S2(cos 20/d2)(cos 2 ~ /+  sin 2 ~psin 2 0) (14) 

P~0P, 0) = P(cos 2 ~p - sin 2 Osin z 0) 

x (cos 2 ~ + sin 2 ~ sin 2 0) -1. (15) 

Fig. 10 shows the measured integrated Bragg intensities 
for the 300 Bragg peak at 2 = 1.36 A as a function of 
together with a refinement according to (14), where an 
overall scale factor was the only free parameter. The 
main difficulty in obtaining this curve is to avoid 
multiple Bragg diffraction, a problem that will be 
discussed in detail in paper 2 (Strempfer et al . ,  1996). 
We mention that a similar experiment has been carried 
out by Brunel & de Bergevin (1981) on Fe203. 

Fig. 11 shows a test of the polarization dependence. 
Following (15), we expect P ' =  P for ap= 0 and 
P' = - P  for ~p = 90 °, i.e. for incident cr polarization 
as was the case in our experiment, tr--+ tr scattering 
should occur for ¢ = 0 and tr --+ Jr for ap = 90 °. Our 
observations in Fig. 11 agree well with these predic- 
tions. Similar measurements have been reported for an 
Mno.75Zno.25F 2 sample by Hill et al. (1993b). 

7. Discussion 

Our results for the peak intensity and the peak-to- 
background ratio compare quite favorably to earlier 
measurements on MnF 2 (Goldman et al . ,  1987) and 
show that non-resonant magnetic X-ray diffraction can 
be a very useful tool for studies of magnetic phase 
transitions, disorder phenomena and subtle structural 
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Fig. 8. Sample (left) and analyzer (right) scan of the 
300 magnetic Bragg peak at T =  10K and 
2=1 .9A .  The spin is perpendicular to the 
scattering plane. The analyzer crystal is Si 111. 
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details. First applications of non-resonant magnetic 
X-ray diffraction have indeed already been reported. A 
major advantage of magnetic X-ray diffraction with 
respect to magnetic neutron diffraction lies in the 
superior Q-space resolution demonstrated in Fig. 8. The 
value of 5 x 10 -9 tk -3 for the resolution volume element 
has to be compared with typical values of 10 -4 ]k -3 in 
neutron diffraction. It should, however, be emphasized 
that the good intrinsic resolution is only advantageous 
for very good single crystals: non-resonant magnetic 
X-ray diffraction depends crucially on the crystal 
quality! 

The main result of our investigation is shown in Fig. 
10, which provides a test of the angular dependencies of 
the non-resonant magnetic X-ray scattering cross 
section (4). The ratio between I ( 7 , = 0 )  and 
1(0 = 90 °) is given by sin20 = 0.17 as predicted by 
(4). Moreover, the dependence on the spin components 
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Fig. 9. Temperature dependence of the sublattice magnetization in 
reduced coordinates as obtained from the integrated intensity of the 
magnetic 300 reflection. The measurement at a photon energy of 
10.5 keV (full circles) agrees well with a measurement at 80keV 
(diamonds) reported in paper 2 (Strempfer et al. ,  1996). 
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Fig. 10. Integrated intensities I of the magnetic 300 Bragg peak at 
T = 10K and 2 = 1.36A as a function of the angle ~p of rotation 
around the scattering vector. ~p = 0 corresponds to the spin 
perpendicular to the scattering plane. Measured values are given 
by full circles, the theoretical dependence is shown as a solid line. 

SI and S 2 could be confirmed. While the angular 
dependencies can be measured without polarization 
analysis, it is important to confirm that the polarization 
state of the scattered photons corresponds to the 
predictions of (4). This has been done by measurements 
utilizing our polarization analyzer as shown in Fig. 11. 
For magnetic diffraction, cr -+ tr scattering occurs if  the 
spin is perpendicular to the scattering plane, while only 
o"--+ zr scattering is present if  the spin moment lies 
within the scattering plane. Only in the latter case do we 
observe a 'flip' of the polarization state, which allows 
magnetic scattering to be distinguished from charge 
scattering. The polarization analysis shown in Fig. 11 
together with the angular dependencies from Fig. 10 
provide a test of the spin-dependent part of the first 
column in (4). In our case, everything is known about 
the model system MnF 2. For a substance with unknown 
magnetic structure, on the other hand, an examination 
of the angular dependencies similar to that shown in 
Fig. 10 can reveal the spin direction relative to the 
lattice. Of course, this method only works for crystals 
where one spin direction is favored. This is the case for 
collinear magnetic structures and single-domain crystals 
or at least crystals with an uneven domain population. 
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Fig. 11. (a) Polarization analysis of the 300 magnetic Bragg peak for 
~-= 90 °. Only e ~ ~r scattering is observed. (b) Polarization 
analysis of the 500 magnetic Bragg peak for ~" = 0 ° . Only e -+ ~ 
scattering is observed. 
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If, for example, two domains with perpendicular spin 
direction are equally occupied, which is likely for cubic 
crystals or tetragonal crystals with a or b as the easy 
axis, the intensity variation with ap vanishes according 
to (14). 

8. Summary and conclusions 

We have presented a new set-up for magnetic X-ray 
diffraction that allows a full polarization analysis of the 
linear polarization components. The set-up consists of a 
polarization monitor that measures continuously the 
polarization of the incident monochromatic beam and a 
polarization analyzer that measures the polarization 
after diffraction from the sample. The new design for 
the polarization analyzer stands out through its high 
versatility and efficient background suppression. The 
device can be employed as a conventional crystal 
analyzer as well as a polarization analyzer. We have 
shown that Si mosaic crystals can be successfully used 
as analyzer crystals for polarization analysis. Analyzer 
and monitor have been tested against each other by 
measuring the polarization of the incident monochro- 
matic synchrotron beam. We showed that dynamical 
diffraction and thermal effects from the monochromator 
crystals cannot be neglected and have to be taken into 
account for a calculation of the degree of linear 
polarization. For an Si 111 double monochromator, an 
effective cos 3 20 polarization factor for the n" component 
described our results well. For the full beam at the 
HASYLAB wiggler station W1, the degree of linear 
polarization is approximately 85 %, nearly independent 
of photon energy. By closing vertical slits, a value of 
93 % can be reached. Higher values of P can be obtained 
by detuning the monochromator. 

With the new set-up, we examined the non-resonant 
magnetic X-ray scattering cross section from MnF 2. An 
inspection of the raw data demonstrates the capabilities 
of the technique: count rates of up to several thousand 
photons s -1 could be obtained without the analyzer. 
With the analyzer, we still observed count rates of 
several hundred counts s -1 , a peak-to-background ratio 
of 160:1 and a Q-space resolution of 5 × 10 -9 tk -3. 
These values clearly demonstrate that, for good sample 
crystals (i.e. with narrow mosaic distribution), reso- 
nance enhancements are not necessary to obtain data 
that are in certain respects (namely Q-space resolution, 
extinction-free intensities) superior to neutron diffrac- 
tion. Finally, we have examined the spin-dependent part 
of the non-resonant magnetic X-ray cross section: we 
have tested the theoretical predictions for the angular 
dependencies of the total intensity on the Bragg angle 20 
and the angle ap for a rotation around the scattering 
vector. In a second step, we have performed a 
polarization analysis for two magnetic reflections 300 
and 500 and two positions 7z in order to test the matrix 
elements of the cross section separately. Our experi- 

ments confirm the form (4) of the cross section. Finally, 
we point out that, for unknown spin structures, the 
method of measuring integrated intensities while turn- 
ing the crystal around the scattering vector can be used 
to determine the spin direction relative to the lattice. 

While today most magnetic X-ray scattering experi- 
ments deal with resonant exchange scattering, we 
conclude from our results that non-resonant magnetic 
scattering can be a quite competitive probe compared to 
the traditional neutron diffraction experiments for 
transition-metal compounds, where no significant reso- 
nance enhancement can be obtained at the K edges. For 
good crystals, the count rates at insertion-device 
beamlines are high enough to take full advantage of 
the high Q-space resolution and the possibility of 
measuring structure factors extinction free. The non- 
resonant magnetic X-ray scattering cross section is very 
rich in its angular and polarization dependencies and we 
have demonstrated in principle how it c anbe  used to 
determine spin directions in unknown magnetic struc- 
tures. 
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